Journal of Photochemistry and Photobiology A: Chemistry 128 (1999) 129-133 www.elsevier.nl/locate/jphotochem # Synthesis and photocatalytic properties of HNbWO₆/TiO₂ and HNbWO₆/Fe₂O₃ nanocomposites Jihuai Wu^a, Satoshi Uchida^b, Yoshinobu Fujishiro^b, Shu Yin^b, Tsugio Sato^{b,*} ^a Institute of Material Physical Chemistry, Huaqiao University, Quanzhou 362011, China ^b Institute for Chemical Reaction Science, Tohoku University, Sendai 980-8577, Japan Received 25 January 1999; received in revised form 7 July 1999; accepted 14 July 1999 ### **Abstract** TiO_2 and Fe_2O_3 were intercalated into the interlayer of $HNbWO_6$ together with Pt by the successive reactions of $HNbWO_6$ with $[Pt(NH_3)_4]Cl_2$, n- $C_3H_7NH_2$ and acidic TiO_2 colloid solution or $[Fe_3(CH_3CO_2)_7(OH)(H_2O)_2]NO_3$ aqueous solution followed by UV light irradiation. The height of TiO_2 and Fe_2O_3 pillars was less than 0.5 nm. The bandgap energies of $HNbWO_6/TiO_2$ and $HNbWO_6/Fe_2O_3$ nanocomposites were 3.12 and 2.22 eV, respectively. Both nanocomposites showed hydrogen production activity by the bandgap irradiation in the presence of sacrificial hole acceptor such as methanol. The photocatalytic activities of $HNbWO_6/TiO_2$ and $HNbWO_6/Fe_2O_3$ nanocomposites were superior to those of unsupported TiO_2 and Fe_2O_3 and were enhanced by co-incorporation of Pt. The hydrogen production activities of $HNbWO_6/Pt$, $HNbWO_6$ Keywords: Photocatalyst; Visible light; HNbWO₆; TiO₂; Fe₂O₃; Intercalation; Nanocomposites # 1. Introduction Photocatalytic reactions of semiconductors, such as splitting of water and reduction of carbon dioxide, have received special attention because of their possible application for the conversion of solar energy into chemical energy. Many studies have been carried out to enhance the photocatalytic activity of semiconductors. It is to be expected that the photoactivity of a semiconductor increases with the decrease of particle size since, in such a system, the distance which the photoinduced holes and electrons have to diffuse before reaching the interface decreases. Consequently, the holes and electrons can be effectively captured by the electrolyte in the solution [1]. Incorporation of semiconductor particles via chemical reactions in the interlayer region of a lameller compound is a promising method for the fabrication of a nanocomposite consisting of host layers with ultrafine particles in the interlayer. Yamanaka et al. [2], Enea and Bard [3], Yoneyama et al. [4–6], and Sato et al. [7–9] have reported the incorporation of extremely small particles of Fe₂O₃, TiO₂, CdS and CdS–ZnS mixtures, <1 nm in thickness, into the interlayer of layered compounds, such as montmorillonite, layered double hydroxides, layered niobate and layered titanate. As expected, the photocatalytic activities of the incorporated semiconductors were much higher than those of unsupported semiconductors. In previous papers [7,8], we reported that the photoactivities of incorporated semiconductors depended on the physico-chemical properties of the host layer. In continuation of our studies, new layered nanocomposites, HNbWO $_6$ /TiO $_2$ and HNbWO $_6$ /Fe $_2$ O $_3$ were synthesized and their photocatalytic activities were evaluated. # 2. Experimental section #### 2.1. Chemicals HNbWO₆ was prepared by the proton exchange reaction of LiNbWO₆ in 2 M HNO₃ at room temperature for 48 h with one intermediate replacement of the acid in 24 h. LiNbWO₆ was obtained by calcining stoichiometric mixture of Li₂CO₃, WO₃ and Nb₂O₅ at 800°C in air for 24 h with one intermediate grinding [10]. [Fe₃(CH₃COO)₇(OH)(H₂O)₂]NO₃ was ^{*} Corresponsing author. Tel: +81-22-217-5597; fax: +81-22-217-5599 E-mail address: tsusato@icrs.tohoku.ac.jp (T. Sato) synthesized by the reaction of Fe(NO₃)₃·9H₂O with acetic anhydride in ethanol as reported [2]. Unsupported TiO₂ (Deggusa P-25) was commercially obtained and used without further purification. Unsupported TiO₂/Pt was obtained by the photodeposition of 0.3 wt.% Pt on P-25 by dispersing the powder in Pt(NH₃)₄Cl₂ solution, followed by UV light irradiation from a 100 W high pressure mercury lamp for 16 h. Unsupported Fe₂O₃ was prepared by adding a 1 M Fe(NO₃)₃ aqueous solution (50 ml) to a 5 M NH₃ aqueous solution (500 ml) at room temperature and the precipitate was washed with water until free of NH₃ and dried at 120°C. # 2.2. Incorporation of TiO_2 and Pt into the interlayer of $HNbWO_6$ TiO₂ sol was made by adding titanium tetraisopropoxide to 1 M HCl solution with the TiO₂/HCl molar ratio of 0.25. HNbWO₆/*n*-C₃H₇NH₂ was obtained by stirring HNbWO₆ (1 g) in 50 ml of 20 vol% *n*-C₃H₇NH₂/*n*-heptane solution under reflux at 50°C for 72 h. HNbWO₆/*n*-C₃H₇NH₂ was added to TiO₂ sol solution with the TiO₂/HNbWO₆ molar ratio of 20. The suspension was continuously stirred for 6 h at room temperature so as to incorporate TiO₂ into the interlayer of HNbWO₆. After being filtered and washed with water, the specimen was dispersed in water and irradiated with UV light from a 450 W high-pressure mercury lamp at 60°C for 12 h so as to decompose any *n*-C₃H₇NH₂ remaining in the interlayer of HNbWO₆. The sample obtained was designated as HNbWO₆/TiO₂. [Pt(NH₃)₄]²⁺ was incorporated in the interlayer of HNbWO₆ by stirring HNbWO₆ (4 g) in 0.6 mM [Pt(NH₃)₄]Cl₂ aqueous solution (1000 ml) at room temperature for 72 h. After being filtered and washed with water, the specimen was dispersed in water and irradiated with UV light from a 450 W high-pressure mercury lamp at room temperature for 5 h to deposit Pt particles in the interlayer of HNbWO₆. The product obtained was designated as HNbWO₆/Pt. After that TiO₂ was incorporated into the interlayer of HNbWO₆/Pt by successive intercalating reactions with 20 vol% *n*-C₃H₇NH₂/*n*-heptane solution, TiO₂ sol solution and irradiation with UV light in a similar manner as that for preparing HNbWO₆/TiO₂. The sample obtained was designated as HNbWO₆/(Pt, TiO₂). # 2.3. Incorporation of Fe_2O_3 and Pt into the interlayer of $HNbWO_6$ Fe_2O_3 was incorporated into the interlayer of $HNbWO_6$ by irradiating the $[Fe_3(CH_3CO_2)_7(OH)(H_2O)_2]^+$ exchanged compound with UV light from a 450 W high-pressure mercury lamp at $50^{\circ}C$ for 12 h. The exchanged compound was obtained by ion-exchange reaction with $HNbWO_6/n-C_3H_7NH_2$ (2 g) and $[Fe_3(CH_3CO_2)_7(OH)(H_2O)_2]NO_3$ (25 g) in 500 ml water at $50^{\circ}C$ for 72 h. The sample obtained was designated as $HNbWO_6/Fe_2O_3$. Fe_2O_3 was incorporated into HNbWO₆/Pt by successive intercalating reactions with 20 vol% $n\text{-}C_3H_7NH_2/n\text{-}heptane$ solution, $[Fe_3(CH_3CO_2)_7(OH)(H_2O)_2]NO_3$ aqueous solution and photodecomposition of $[Fe_3(CH_3CO_2)_7(OH)(H_2O)_2]^+$ in a similar manner as that for preparing $HNbWO_6/Fe_2O_3$. The sample obtained was designated as $HNbWO_6/(Pt, Fe_2O_3)$. ### 2.4. Analysis The crystalline phases of the products were identified by X-ray diffraction (Shimadzu XD-01) using graphite monochromized Cu K α radiation. The chemical compositions of the products were determined by TG-DTA analysis (Rigaku Denki TAS 200 TG-DTA) and by inductively coupled plasma atomic emission spectroscopy (Seiko SPS-1200A) by dissolving the samples in water after mixing 0.1 g samples with 4 g Na₂CO₃ and calcining at 800°C for 4h. The band gap energies of the products were determined from the onset of diffuse reflectance spectra of the powders measured by using a Shimadzu Model UV-2000 UV-VIS spectrophotometer. The specific surface areas of samples were determined by nitrogen gas adsorption method (Quantachrome Autosorb-1). # 2.5. Photocatalytic reaction Photocatalytic reaction was carried out in a Pyrex reactor of 1250 ml capacity attached to an inner radiation type 450 W high-pressure mercury lamp. The inner cell had thermostat water flowing through a jacket between the mercury lamp and the reaction chamber. The inner cell was constructed of Pyrex glass which served to filter out the UV emission of the mercury arc below 290 nm. The UV emission of the mercury arc below 400 nm was filtered out by flowing 1 M NaNO₂ solution between the mercury lamp and the reaction chamber. The photoactivity of the catalyst was determined by measuring the volume of hydrogen gas evolved with a gas burette when the suspension of catalyst was irradiated. ### 3. Results and discussions # 3.1. Intercalation of TiO_2 or Fe_2O_3 into the interlayer of $HNbWO_6$ Fig. 1 depicts the X-ray powder diffraction patterns of the products (a) HNbWO₆, (b) HNbWO₆/*n*-C₃H₇NH₂, (c) HNbWO₆/Pt, (d) HNbWO₆/Fe₂O₃, (e) HNbWO₆/(Pt, Fe₂O₃), (f) HNbWO₆/TiO₂, (g) HNbWO₆/(Pt, TiO₂). The peak positions, corresponding to (110) of HNbWO₆, of samples (b)–(g) changed significantly depending on the species in the interlayer. These results suggested that the layered structure of HNbWO₆ was retained after intercalation of Fig. 1. Powder X-ray diffraction patterns of (a) $HNbWO_6$, (b) $HNbWO_6/r-C_3H_7NH_2$, (c) $HNbWO_6/Pt$, (d) $HNbWO_6/Fe_2O_3$, (e) $HNbWO_6/(Pt, Fe_2O_3)$, (f) $HNbWO_6/(TiO_2)$, (g) $HNbWO_6/(Pt, TiO_2)$. *n*-C₃H₇NH₂, TiO₂, Fe₂O₃ and Pt, although the distance of the interlayer changed. Compared with sample (a), the main peak, corresponding to (002) of HNbWO₆ of sample (b), shifted significantly to lower 2θ angle, which indicated the expansion of the interlayer by incorporation of *n*-C₃H₇NH₂. The gallery height of HNbWO₆/*n*-C₃H₇NH₂ determined by subtracting the HNbWO₆ layer thickness (0.76 nm) [10,11], is 1.03 nm, which is almost twice the length of the *n*-C₃H₇NH₂ molecule. Therefore, it is suspected that two molecules of *n*-C₃H₇NH₂ are vertically arranged in the interlayer of HNbWO₆. The TG curve of $C_3H_7NH_3NbWO_6$ (Fig. 2) indicated 14% weight loss until 650°C, which agreed with the calculated value (14%) according to the following reaction. $$C_3H_7NH_3NbWO_6 + \frac{9}{2}O_2 \rightarrow \frac{1}{2}Nb_2O_5 + WO_3 + 3CO_2 + NH_3 + \frac{7}{2}H_2O$$ Therefore, it was confirmed that the stoichiometric amount of *n*-C₃H₇NH₂ was intercalated in HNbWO₆. The reflection spectra of HNbWO₆, HNbWO₆/Pt, HNbWO₆/Fe₂O₃, HNbWO₆/(Pt, Fe₂O₃), HNbWO₆/TiO₂ and HNbWO₆/(Pt, TiO₂) are shown in Fig. 3. The spectra of Fig. 2. TG curve of $HNbWO_6/n-C_3H_7NH_2$. Fig. 3. Reflection spectra of (a) HNbWO $_6$, (b) HNbWO $_6$ /Pt, (c) HNbWO $_6$ /Fe $_2$ O $_3$, (d) HNbWO $_6$ /(Pt, Fe $_2$ O $_3$), (e) HNbWO $_6$ /(TiO $_2$), (f) HNbWO $_6$ /(Pt, TiO $_2$). HNbWO₆ and HNbWO₆/TiO₂ were almost the same, indicating the onset at ca. 400 nm (3.10 eV). On the other hand, HNbWO₆/Fe₂O₃ and HNbWO₆/(Pt, Fe₂O₃) showed broad reflection spectra with two onsets at ca. 400 and 550 nm corresponding to both the host HNbWO₆ layer and incorporated Fe₂O₃. The different phenomena that occurred on incorporation of Fe₂O₃ and TiO₂ might be due to the difference in band gap energies, i.e., the difference in the band gap energies of TiO₂ and HNbWO₆ is not large, but that of Fe₂O₃ and HNbWO₆ is large. Similar phenomena were also observed in H₂Ti₄O₉-TiO₂, H₄Nb₆O₁₇-TiO₂, H₂Ti₄O₉-Fe₂O₃ and H₄Nb₆O₁₇-Fe₂O₃ systems [8]. It is also notable that although HNbWO₆ and HNbWO₆/TiO₂ were white, both Table 1 Gallery heights, element contents, band gap energies and surface areas of the products | Product | Gallery height (nm) | Content (wt.%) | | | Band gap energy (eV) | Surface area (m ² g ⁻¹) | |--|---------------------|----------------|------|------|----------------------|--| | | | Ti | Fe | Pt | | | | HNbWO ₆ | 0.29 | 0 | 0 | 0 | 3.10 | 5.99 | | HNbWO ₆ /Pt | 0.31 | 0 | 0 | 0.13 | 3.10, 2.25 | 7.08 | | HNbWO ₆ /TiO ₂ | 0.49 | 4.42 | 0 | 0 | 3.10 | 36.1 | | HNbWO ₆ /Fe ₂ O ₃ | 0.43 | 0 | 4.01 | 0 | 3.10, 2.25 | 23.3 | | HNbWO ₆ /(Pt, TiO ₂) | 0.51 | 3.55 | 0 | 0.28 | 3.10, 2.25 | 36.1 | | $HNbWO_6/(Pt, Fe_2O_3)$ | 0.43 | 0 | 2.55 | 0.13 | 3.10, 2.25 | 23.3 | HNbWO₆/Pt and HNbWO₆/(Pt, TiO₂) showed yellow coloring and two onsets at ca. 400 and 550 nm. It was reported that HTaWO6 which possesses the same crystal structure as HNbWO6 caused photo-induced phase transformation to Ta₂O₅ and WO₃ on laser irradiation [12]. Therefore, it was suspected that similar photo-induced phase transformation occurred in HNbWO₆/Pt and HNbWO₆/(Pt, TiO₂) systems to form Nb₂O₅ and WO₃, since both samples were irradiated with UV light for 5 and 12h for the photodeposition of Pt and photodecomposition of n-C₃H₇NH₂ in the interlayer, respectively (see Section 2.2). So that, the onset at 400 and 550 nm might be attributed to the HNbWO₆ remaining and WO₃ formed by the photo-induced phase transformation. Since no noticeable transformation was observed in HNbWO₆/TiO₂ which was irradiated with UV light for 12h, it is suspected that Pt promoted the photo-induced phase transformation of HNbWO₆. The gallery heights, amounts of Ti, Fe and Pt elements incorporated, band gap energies and the specific surface areas of products are summarized in Table 1. The amounts of Ti, Fe and Pt elements incorporated were 3.55–4.42, 2.55–4.01 and 0.13–0.28 wt.%, respectively. Since the gallery heights of HNbWO₆/TiO₂ and HNbWO₆/Fe₂O₃ were 0.49 nm and 0.43 nm, the thickness of TiO₂ and Fe₂O₃ in the interlayer of HNbWO₆ was suggested to be less than 0.5 nm. The specific surface areas of HNbWO₆/TiO₂, HNbWO₆/Fe₂O₃, HNbWO₆/(Pt, TiO₂) and HNbWO₆/(Pt, Fe₂O₃) were 4–6 times greater than that of HNbWO₆ which further indicated the formation of the Fe₂O₃ and TiO₂ pillars. ### 3.2. Photocatalytic properties The amount of hydrogen gas produced from 1250 ml of 10 vol% methanol solutions containing 1 g of dispersed unsupported TiO₂ (P-25), unsupported TiO₂/Pt, HNbWO₆, HNbWO₆/Pt, HNbWO₆/TiO₂, HNbWO₆/(Pt, TiO₂), unsupported Fe₂O₃, HNbWO₆/Fe₂O₃, and HNbWO₆/(Pt, Fe₂O₃) at 60°C when irradiated with the light (λ > 290 nm) from a 450 W mercury arc for 5 h are shown in Fig. 4(a). All samples showed photocatalytic activity to evolve hydrogen gas. The amount of hydrogen gas produced increased in the sequence, unsupported Fe₂O₃ < unsupported TiO₂ (P-25) < HNbWO₆ < HNbWO₆/Fe₂O₃ < Fig. 4. Amount of hydrogen gas produced from 1250 ml of 10 vol% methanol solution containing 1 g of dispersed unsupported TiO₂ (P-25), HNbWO₆, HNbWO₆/Pt, HNbWO₆/TiO₂, HNbWO₆/(Pt, TiO₂), unsupported Fe₂O₃, HNbWO₆/Fe₂O₃, and HNbWO₆/(Pt, Fe₂O₃) at 60° C by irradiating a 450 W mercury arc above (a) 290 nm and (b) 400 nm for 5 h. $HNbWO_6/TiO_2 < HNbWO_6/(Pt, Fe_2O_3) < HNbWO_6/(Pt, TiO_2) \ll TiO_2/Pt$. These results suggested that the photocatalytic activities of Fe_2O_3 and TiO_2 were enhanced when they were intercalated in the interlayer of $HNbWO_6$, especially when Pt is intercalated together with them. Under the experimental conditions, the amounts of hydrogen gas produced from HNbWO₆/TiO₂ and HNbWO₆/(Pt, TiO₂) catalyst were about 2 and 5.5 times larger than that of unsupported TiO₂. The amounts of hydrogen gas produced from HNbWO₆/(Pt, TiO₂) catalyst, however, was only 2% of Pt deposited P-25. This perhaps can be attributed to low content of TiO₂ in HNbWO₆/(Pt, TiO₂) (3.5 wt.% see Table 1) and greater difficulty of the hole scavenger, CH₃OH, accessing the intercalated semiconductor. Fig. 4(b) expresses the amount of hydrogen gas from 1250 ml of 10 vol% methanol solution containing 1 g of dispersed samples at 60°C under visible light irradiation($\lambda > 400 \, \text{nm}$) from a 450 W mercury arc for 5 h. As expected from their wide band gap energies (>3 eV), no hydrogen gas evolution was observed in the presence of unsupported TiO2, unsupported TiO2/Pt, HNbWO6 and HNbWO₆/TiO₂. It was notable that evolution of hydrogen gas in the presence of HNbWO₆/Fe₂O₃ was three times greater than that of unsupported Fe₂O₃ and was greatly enhanced by co-intercalation of Pt with Fe₂O₃. The enhancement of hydrogen evolution by incorporation in the interlayer indicates that photoinduced electrons and holes in intercalated Fe₂O₃ can be effectively used for the reduction of water and oxidation of methanol, but those in unsupported Fe₂O₃ rapidly recombined. The depression of the recombination of electrons and holes might be due to the electron transfer from Fe₂O₃ to host layer and/or Pt. Similar results were reported in Fe₂O₃-Pt-H₄Nb₆O₁₇ and Fe₂O₃-Pt-H₂Ti₄O₉ systems, but the photocatalytic activity of HNbWO₆/(Pt, Fe₂O₃) catalyst was ca. 1.5 and 1.7 times greater than that of H₄Nb₆O₁₇/(Pt, Fe₂O₃) and H₂Ti₄O₉/(Pt, Fe₂O₃), respectively [7]. It was also notable that both HNbWO₆/Pt and HNbWO₆/(Pt, TiO₂) showed photocatalytic activity under visible light irradiation. Since both HNbWO6 and TiO2 are wide band gap semiconductors, it is suspected that WO₃ formed in those samples by photo-induced phase transformation played important roles in the hydrogen evolution under visible light irradiation. The photocatalytic activity under visible light irradiation was in the order $HNbWO_6/(Pt, Fe_2O_3) > HNbWO_6/(Pt, TiO_2) >$ $HNbWO_6/Fe_2O_3 > HNbWO_6/Pt \gg unsupported Fe_2O_3$. #### 4. Conclusions From the results of tests described, the following conclusions may be drawn. (1) TiO₂ and Fe₂O₃ together with Pt could be intercalated into the interlayer of HNbWO₆ by successive reactions of HNbWO₆ with [Pt(NH₃)₄]Cl₂, *n*-C₃H₇NH₂, acidic TiO₂ colloid solution or [Fe₃(CH₃CO₂)₇(OH)(H₂O)₂]NO₃ aqueous solution followed by UV light irradiation. (2) The thickness of TiO₂ and Fe₂O₃ was less than 0.5 nm. (3) The hydrogen production activity of HNbWO₆/TiO₂ and HNbWO₆/Fe₂O₃ nanocomposites was superior to that of unsupported TiO₂ (P-25) and Fe₂O₃, respectively. (4) The photocatalytic activities of HNbWO₆/TiO₂ and HNbWO₆/Fe₂O₃ nanocomposites are greatly enhanced by co-intercalation of Pt. # Acknowledgements This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture. #### References - [1] A. Hagfeldt, M. Gratzel, Chem. Rev. 95 (1995) 49. - [2] S. Yamanaka, T. Doi, S. Sako, Mater. Res. Bull. 19 (1994) 61. - [3] O. Enena, A.J. Bard, J. Phys. Chem. 90 (1986) 301. - [4] H. Miyoshi, H. Yoneyama, J. Chem. Soc. Faraday Trans. 85 (1989) 1873 - [5] H. Yoneyama, S. Haga, S. Yamanaka, J. Phys. Chem. 93 (1989) 4833. - [6] H. Miyoshi, H. Mori, H. Yoneyama, Langmuir. 7 (1991) 503. - [7] T. Sato, Y. Yamamoto, S. Uchida, J. Chem. Soc. Faraday Trans. 92 (1996) 5089. - [8] S. Uchida, Y. Yamamoto, T. Sato, J. Chem. Soc. Faraday Trans. 93 (1997) 3229. - [9] T. Sato, K. Masaki, K. Sato, J. Chem. Tech. Biotechnol. 67 (1996) 339 - [10] V. Bhat, J. Gopalakrishnan, Solid State Ionics 26 (1988) 25. - [11] R.P. Shannon, C.T. Prewitt, Acta Cryst. B25 (1961) 125. - [12] E. Cazzanelli, G. Mariotto, M. Catti, Solid State Ionics 53 (1992) 383